Most beautiful equations

2 minutes
physicsmaths
philosophyaesthetics

Intermediate

anybody

Euler's identity

eiπ+1=0e^{i\pi} + 1 = 0

Einstein's mass-energy equivalence

E=mc2E = mc^2

The general wave equation

2ux21c22ut2=0\Large \frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0

Maxwell's equations
E=ρε0 Gauss’s law for electricityB=0 Gauss’s law for magnetism×E=Bt Faraday’s law of induction×B=μ0J+μ0ε0Et Ampere’s law with Maxwell’s addition\begin{align} \nabla \cdot \mathbb{E} = \frac{\rho}{\varepsilon_0} \scriptsize &\quad\text{ Gauss's law for electricity} \nonumber \\ \nabla \cdot \mathbb{B} = 0 \footnotesize &\quad\text{ Gauss's law for magnetism} \nonumber \\ \nabla \times \mathbb{E} = -\dfrac{\partial \mathbb{B}}{\partial t} \footnotesize &\quad\text{ Faraday's law of induction} \nonumber \\ \nabla \times \mathbb{B} = \mu_0 \mathbb{J} + \mu_0 \varepsilon_0 \dfrac{\partial \mathbb{E}}{\partial t} \footnotesize &\quad\text{ Ampere's law with Maxwell's addition} \nonumber \end{align}
Shrodinger' wave equation

22m2ψx2=iψt-\dfrac{\hbar^2}{2m}\dfrac{\partial^2\psi}{\partial x^2 }= i\hbar\dfrac{\partial \psi}{\partial t}